목록챗봇 (4)
Dharma
저번 자동진화 웹버젼 챗봇 에 추가 설명을 하겠습니다. 처음부터 어떻게 해야 하는지 모르겠다는 평을 들었기 때문입니다. 자연스럽게 따라하기 편하게 명령을 쭈욱 나열하겠습니다. 이 명령은 아나콘다 가 설치되어 있는 OSX(또는 우분투 머신) 기준에서 작성했습니다. Windows 는 알아서 적용하시길 바랍니다. $ conda create -n tensor python=3.6 $ git clone git@github.com:crazia/NM-chatbot.git $ cd NM-chatbot $ pip install -r requirements.txt $ python manage.py migrate $ python manage.py createsuperuser $ python manage.py makedata ..
seq2seq 를 이용해서 챗봇을 만든 시리즈중에서 3번째 입니다. 콘솔버젼 웹버젼 에 이어서 웹버젼 을 실제 AWS 에 디플로이 한 버젼입니다. 현재는 교육 자료가 간단한 문답 6개로 이루어져 있어서 제대로 동작하지는 않지만 추후에 데이타가 많아지면 좀 제대로 대답할 듯 합니다. https://chat.crazia.org 에서 확인 가능합니다. Websocket 을 띄우는데 많이 애 먹었습니다 ㅋㅋ
저번 NMT를 이용한 챗봇(Console) 에 간단하게 웹 인터페이스(web interface) 를 붙여봤습니다. 저번 버젼에서 옵션같은 것을 조정하고 환경변수에 모델이 저장된 위치를 지정하고 웹만 띄우면 되는 버젼으로 가볍게 고쳤습니다. 교육(Train) 시키고 이런 것은 저번 포스트에서 다루었기 때문에 실제로 구동하는 것만 할 줄 알면 될것 같습니다. 웹 버젼은 장고를 이용해서 작성했으면 채널을 이용해서 간단한 웹소켓을 이용하는 식으로 만들었습니다. 저번 포스트 참조하기 다만 저반하고 달라진건 교육 시키는 방법 입니다. 저번에는 급하게 만드느라 package path 연결시키는 것을 무시했는데 이번에는 그걸 다 맞췄습니다. python -m core.nmt \ --attention=scaled_luo..
최근 열심히 공부해서 간단한 챗봇을 만들 수가 있었습니다. 형태가 간단할 뿐이지 그 안에 들어 있는 Deep Learning 은 구글의 최신 NMT example 을 참조해서 만들었습니다. github 에 올리는 거라 대충 영어로 올렸지만 좀 자세한 설명은 여기에 남길려고 합니다. NMT(Neural Machine Traslation) 과 chatbot 은 원리상 거의 같습니다. seq2seq 방식으로 RNN 세팅해서 교육시키는 것 까지 동일합니다. 따라서 잘 만들어진 NMT 는 training 자료만 교체해서 챗봇으로 활용 가능합니다. 소스는 https://github.com/crazia/NM-chatbot 에서 받을 수 있습니다. 파이썬(python) 버젼은 3.6 이고 tensorflow 버젼은 1..