[Deep Learning] seq2seq 를 이용한 챗봇 (Neural Machine Chatbot) 웹 버젼

저번  NMT를 이용한 챗봇(Console) 에 간단하게 웹 인터페이스(web interface) 를 붙여봤습니다. 저번 버젼에서 옵션같은 것을 조정하고 환경변수에 모델이 저장된 위치를 지정하고 웹만 띄우면 되는 버젼으로 가볍게 고쳤습니다.


교육(Train) 시키고 이런 것은 저번 포스트에서 다루었기 때문에 실제로 구동하는 것만 할 줄 알면 될것 같습니다.  웹 버젼은 장고를 이용해서 작성했으면 채널을 이용해서 간단한 웹소켓을 이용하는 식으로 만들었습니다. 


저번 포스트 참조하기


다만 저반하고 달라진건 교육 시키는 방법 입니다. 저번에는 급하게 만드느라 package path 연결시키는 것을 무시했는데 이번에는 그걸 다 맞췄습니다. 


python -m core.nmt \
    --attention=scaled_luong \
    --src=req --tgt=rep \
    --vocab_prefix=/tmp/nmt_chat/vocab  \
    --train_prefix=/tmp/nmt_chat/train \
    --dev_prefix=/tmp/nmt_chat/test  \
    --test_prefix=/tmp/nmt_chat/test \
    --out_dir=/tmp/chat_model \
    --num_train_steps=12000 \
    --steps_per_stats=100 \
    --num_layers=4 \
    --num_units=128 \
    --dropout=0.2 \
    --metrics=bleu


이제 교육이 된 모델을 소유하고 있다면 ENV 에 그 내용을 추가해 줍니다. 



export OUT_DIR='POSITION FOR MODEL'



PROJECT ROOT 로 이동해서 



python manage.py runserver 



하면 서버가 띄워지고 http://localhost:8000 으로 가서 확인이 가능합니다. 


모든 소스는 


https://github.com/crazia/NM-chatbot


에서 받을수 있습니다.